Skip to main content

Sum and Product Identities

Adding on to the previous identities, we can also express the sum and product of trigonometric functions in terms of each other. These identities are useful for simplifying expressions and solving equations.

Product as Sum

We can derive the product-to-sum identities by adding or subtracting the sum-to-product identities together. The product of two cosine functions can be derived by adding cos(αβ)\cos(\alpha - \beta) and cos(α+β)\cos(\alpha + \beta) together...

+cos(αβ)=cosαcosβ+sinαsinβ+cos(α+β)=cosαcosβsinαsinβcos(αβ)+cos(α+β)=2cosαcosβ12[cos(αβ)+cos(α+β)]=cosαcosβ\begin{array}{ccccc} \phantom{+\:} \cos(\alpha - \beta) &=& \cos \alpha \cos \beta + \sin \alpha \sin \beta \\[0.5em] +\: \cos(\alpha + \beta) &=& \cos \alpha \cos \beta - \sin \alpha \sin \beta \\[1em] \hline \\[0em] \cos(\alpha - \beta) + \cos(\alpha + \beta) &=& 2 \cos \alpha \cos \beta \\[0.5em] \dfrac{1}{2} \Bigl[\cos(\alpha - \beta) + \cos(\alpha + \beta)\Bigr] &=& \cos \alpha \cos \beta \\[0.5em] \end{array}

The product of a sine and a cosine function can be derived by adding sin(α+β)\sin(\alpha + \beta) and sin(αβ)\sin(\alpha - \beta) together...

+sin(α+β)=sinαcosβ+cosαsinβ+sin(αβ)=sinαcosβcosαsinβsin(α+β)+sin(αβ)=2sinαcosβ12[sin(α+β)+sin(αβ)]=sinαcosβ\begin{array}{ccccc} \phantom{+\:} \sin(\alpha + \beta) &=& \sin \alpha \cos \beta + \cos \alpha \sin \beta \\[0.5em] +\: \sin(\alpha - \beta) &=& \sin \alpha \cos \beta - \cos \alpha \sin \beta \\[1em] \hline \\[0em] \sin(\alpha + \beta) + \sin(\alpha - \beta) &=& 2 \sin \alpha \cos \beta \\[0.5em] \dfrac{1}{2} \Bigl[\sin(\alpha + \beta) + \sin(\alpha - \beta)\Bigr] &=& \sin \alpha \cos \beta \\[0.5em] \end{array}

The product of two sine functions can be derived by subtracting cos(α+β)\cos(\alpha + \beta) from cos(αβ)\cos(\alpha - \beta)...

cos(αβ)=sinαsinβ+cosαcosβcos(α+β)=sinαsinβcosαcosβcos(αβ)cos(α+β)=2sinαsinβ12[cos(αβ)cos(α+β)]=sinαsinβ\begin{array}{ccccc} \phantom{-\:} \cos(\alpha - \beta) &=& \sin \alpha \sin \beta + \cos \alpha \cos \beta \\[0.5em] -\: \cos(\alpha + \beta) &=& \sin \alpha \sin \beta - \cos \alpha \cos \beta \\[1em] \hline \\[0em] \cos(\alpha - \beta) - \cos(\alpha + \beta) &=& 2 \sin \alpha \sin \beta \\[0.5em] \dfrac{1}{2} \Bigl[\cos(\alpha - \beta) - \cos(\alpha + \beta)\Bigr] &=& \sin \alpha \sin \beta \\[0.5em] \end{array}

Finally, the product of cosine and a sine function can be derived by subtracting sin(αβ)\sin(\alpha - \beta) from sin(α+β)\sin(\alpha + \beta)...

sin(α+β)=sinαcosβ+cosαsinβsin(αβ)=sinαcosβcosαsinβsin(α+β)sin(αβ)=2cosαsinβ12[sin(α+β)sin(αβ)]=cosαsinβ\begin{array}{ccccc} \phantom{-\:} \sin(\alpha + \beta) &=& \sin \alpha \cos \beta + \cos \alpha \sin \beta \\[0.5em] -\: \sin(\alpha - \beta) &=& \sin \alpha \cos \beta - \cos \alpha \sin \beta \\[1em] \hline \\[0em] \sin(\alpha + \beta) - \sin(\alpha - \beta) &=& 2 \cos \alpha \sin \beta \\[0.5em] \dfrac{1}{2} \Bigl[\sin(\alpha + \beta) - \sin(\alpha - \beta)\Bigr] &=& \cos \alpha \sin \beta \\[0.5em] \end{array}

Sum as Product

Sometimes it is useful to reverse the process and express the sum of two trigonometric functions in terms of their product. These identities can be derived through the use of product-to-sum identities and substitute. We can express both α\alpha and β\beta in terms of uu and vv where α=u+v2\alpha = \dfrac{u + v}{2} and β=uv2\beta = \dfrac{u - v}{2}. Substituting these values into α+β\alpha + \beta and αβ\alpha - \beta gives us the following equations...

α+β=u+v2+uv2αβ=u+v2uv2=u+v+uv2=u+vu+v2=2u2=2v2=u=v\begin{array}{cccccccccc} \alpha + \beta &=& \dfrac{u + v}{2} + \dfrac{u - v}{2} \:\:\:\:&&\:\:\:\: \alpha - \beta &=& \dfrac{u + v}{2} - \dfrac{u - v}{2} \\[1em] &=& \dfrac{u + v + u - v}{2} && &=& \dfrac{u + v - u + v}{2} \\[1em] &=& \dfrac{2u}{2} && &=& \dfrac{2v}{2} \\[1em] &=& u && &=& v \\[1em] \end{array}

We can use the facts that α=u+v2\alpha = \dfrac{u + v}{2}, β=uv2\beta = \dfrac{u - v}{2}, α+β=u\alpha + \beta = u, and αβ=v\alpha - \beta = v to derive all the sum-to-product identities. Substituting into cos(α)cos(β)\cos(\alpha)\cos(\beta) gives us the following equation...

cos(α)cos(β)=12[cos(α+β)+cos(αβ)]2cos(α)cos(β)=cos(α+β)+cos(αβ)2cos(u+v2)cos(uv2)=cos(u)+cos(v)\begin{array}{ccccc} \cos(\alpha)\cos(\beta) &=& \dfrac{1}{2} \Bigl[\cos(\alpha + \beta) + \cos(\alpha - \beta)\Bigr] \\[1em] 2\cos(\alpha)\cos(\beta) &=& \cos(\alpha + \beta) + \cos(\alpha - \beta) \\[1em] 2\cos(\dfrac{u + v}{2})\cos(\dfrac{u - v}{2}) &=& \cos(u) + \cos(v) \\[1em] \end{array}

Substituting into sin(α)cos(β)\sin(\alpha)\cos(\beta) gives us the following equation...

sin(α)cos(β)=12[sin(α+β)+sin(αβ)]2sin(α)cos(β)=sin(α+β)+sin(αβ)2sin(u+v2)cos(uv2)=sin(u)+sin(v)\begin{array}{ccccc} \sin(\alpha)\cos(\beta) &=& \dfrac{1}{2} \Bigl[\sin(\alpha + \beta) + \sin(\alpha - \beta)\Bigr] \\[1em] 2\sin(\alpha)\cos(\beta) &=& \sin(\alpha + \beta) + \sin(\alpha - \beta) \\[1em] 2\sin(\dfrac{u + v}{2})\cos(\dfrac{u - v}{2}) &=& \sin(u) + \sin(v) \\[1em] \end{array}

Substituting into sin(α)sin(β)\sin(\alpha)\sin(\beta) gives us the following equation...

sin(α)sin(β)=12[cos(αβ)cos(α+β)]2sin(α)sin(β)=cos(αβ)cos(α+β)2sin(u+v2)sin(uv2)=cos(u)cos(v)\begin{array}{ccccc} \sin(\alpha)\sin(\beta) &=& \dfrac{1}{2} \Bigl[\cos(\alpha - \beta) - \cos(\alpha + \beta)\Bigr] \\[1em] 2\sin(\alpha)\sin(\beta) &=& \cos(\alpha - \beta) - \cos(\alpha + \beta) \\[1em] 2\sin(\dfrac{u + v}{2})\sin(\dfrac{u - v}{2}) &=& \cos(u) - \cos(v) \\[1em] \end{array}

Finally, substituting into cos(α)sin(β)\cos(\alpha)\sin(\beta) gives us the following equation...

cos(α)sin(β)=12[sin(α+β)sin(αβ)]2cos(α)sin(β)=sin(α+β)sin(αβ)2cos(u+v2)sin(uv2)=sin(u)sin(v)\begin{array}{ccccc} \cos(\alpha)\sin(\beta) &=& \dfrac{1}{2} \Bigl[\sin(\alpha + \beta) - \sin(\alpha - \beta)\Bigr] \\[1em] 2\cos(\alpha)\sin(\beta) &=& \sin(\alpha + \beta) - \sin(\alpha - \beta) \\[1em] 2\cos(\dfrac{u + v}{2})\sin(\dfrac{u - v}{2}) &=& \sin(u) - \sin(v) \\[1em] \end{array}

Trigonometric Identities

All the product-to-sum identities are...

cos(α)cos(β)=12[cos(α+β)+cos(αβ)]sin(α)cos(β)=12[sin(α+β)+sin(αβ)]sin(α)sin(β)=12[cos(αβ)cos(α+β)]cos(α)sin(β)=12[sin(α+β)sin(αβ)]\begin{array}{ccccccccc} \cos(\alpha)\cos(\beta) &=& \dfrac{1}{2} \Bigl[\cos(\alpha + \beta) + \cos(\alpha - \beta)\Bigr] \\[1em] \sin(\alpha)\cos(\beta) &=& \dfrac{1}{2} \Bigl[\sin(\alpha + \beta) + \sin(\alpha - \beta)\Bigr] \\[1em] \sin(\alpha)\sin(\beta) &=& \dfrac{1}{2} \Bigl[\cos(\alpha - \beta) - \cos(\alpha + \beta)\Bigr] \\[1em] \cos(\alpha)\sin(\beta) &=& \dfrac{1}{2} \Bigl[\sin(\alpha + \beta) - \sin(\alpha - \beta)\Bigr] \\[1em] \end{array}

All the sum-to-product identities are...

cos(α)+cos(β)=2cos(α+β2)cos(αβ2)sin(α)+sin(β)=2sin(α+β2)cos(αβ2)sin(α)sin(β)=2cos(α+β2)sin(αβ2)cos(α)cos(β)=2sin(α+β2)sin(αβ2)\begin{array}{ccccccccc} \cos(\alpha) + \cos(\beta) &=& 2 \cos (\dfrac{\alpha + \beta}{2}) \cos (\dfrac{\alpha - \beta}{2}) \\[1em] \sin(\alpha) + \sin(\beta) &=& 2 \sin (\dfrac{\alpha + \beta}{2}) \cos (\dfrac{\alpha - \beta}{2}) \\[1em] \sin(\alpha) - \sin(\beta) &=& 2 \cos (\dfrac{\alpha + \beta}{2}) \sin (\dfrac{\alpha - \beta}{2}) \\[1em] \cos(\alpha) - \cos(\beta) &=& -2 \sin (\dfrac{\alpha + \beta}{2}) \sin (\dfrac{\alpha - \beta}{2}) \\[1em] \end{array}