Skip to main content

Sum and Difference Identities

Finding the exact value of the sine, cosine, or tangent of an angle is often easier if we can rewrite a given angle as a sum or difference of two angles that we know the exact value for. For example, we can't currently find the exact value of sin(15)\sin(15^\circ) but once we derive the sum and difference identities, we can rewrite it as sin(4530)\sin(45^\circ - 30^\circ) to find the exact value.

Difference of Cosine

To derive all the sum and difference identities, we will begin by deriving the difference formula for cosine. Let's begin by drawing an angle α\alpha on the unit circle where the initial side of the angle is the positive xx-axis. This angle intersects the unit circle at the coordinates (cosα,sinα)(\cos \alpha, \sin \alpha) which we will call point PP. Next, we will draw a second angle β\beta that is also drawn in standard position and intersects the unit circle at point QQ which has the coordinates (cosβ,sinβ)(\cos \beta, \sin \beta). These two points create a new angle POQ\angle POQ where OO is the origin and this angle is equal to αβ\alpha - \beta.

Before we can derive the formula, we also need to plot two additional points. The first point is AA which is at an angle of αβ\alpha - \beta in standard position and this point has coordinates (cos(αβ),sin(αβ))(\cos(\alpha - \beta), \sin(\alpha - \beta)). The second point is BB which is on the positive xx-axis and this point has coordinates (1,0)(1, 0). All of these points plotted gives us the following diagram...

Difference of Cosine
Fig. 1 - Difference of Cosine

The angles AOB\angle AOB and POQ\angle POQ are both equal to αβ\alpha - \beta which means the triangles AOB\triangle AOB and POQ\triangle POQ are similar. In fact, they are rotations of each other. This also means that the line segments ABAB and PQPQ must be equal in length and so if we find the length of these two segments, we can set them equal to each other. Once we do that, we can solve for cos(αβ)\cos(\alpha - \beta) in terms of cosα\cos \alpha and cosβ\cos \beta giving us the difference formula for cosine.

The length of segment PQPQ can be found using the distance formula where P=(cosα,sinα)P = (\cos \alpha, \sin \alpha) and Q=(cosβ,sinβ)Q = (\cos \beta, \sin \beta)...

PQ=(x2x1)2+(y2y1)2=(cosβcosα)2+(sinβsinα)2=(cos2β2cosαcosβ+cos2α)+(sin2β2sinαsinβ+sin2α)=(cos2α+sin2α)+(cos2β+sin2β)2cosαcosβ2sinαsinβ=1+12(cosαcosβ+sinαsinβ)=22(cosαcosβ+sinαsinβ)\begin{array}{lllllllll} \text{PQ} &=& \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\[1em] &=& \sqrt{(\cos \beta - \cos \alpha)^2 + (\sin \beta - \sin \alpha)^2} \\[1em] &=& \sqrt{(\cos^2 \beta - 2\cos \alpha \cos \beta + \cos^2 \alpha) + (\sin^2 \beta - 2\sin \alpha \sin \beta + \sin^2 \alpha)} \\[1em] &=& \sqrt{(\cos^2 \alpha + \sin^2 \alpha) + (\cos^2 \beta + \sin^2 \beta) - 2\cos \alpha \cos \beta - 2\sin \alpha \sin \beta} \\[1em] &=& \sqrt{1 + 1 - 2(\cos \alpha \cos \beta + \sin \alpha \sin \beta)} \\[1em] &=& \sqrt{2 - 2(\cos \alpha \cos \beta + \sin \alpha \sin \beta)} \\[1em] \end{array}

Next, the length of segment ABAB can be found using the distance formula where A=(cos(αβ),sin(αβ))A = (\cos(\alpha - \beta), \sin(\alpha - \beta)) and B=(1,0)B = (1, 0)...

AB=(x2x1)2+(y2y1)2=(1cos(αβ))2+(0sin(αβ))2=(1cos(αβ))2+(sin(αβ))2=(12cos(αβ)+cos2(αβ))+(sin2(αβ))=12cos(αβ)+(cos2(αβ)+sin2(αβ))=12cos(αβ)+1=22cos(αβ)\begin{array}{lllllllll} \text{AB} &=& \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\[1em] &=& \sqrt{(1 - \cos(\alpha - \beta))^2 + (0 - \sin(\alpha - \beta))^2} \\[1em] &=& \sqrt{(1 - \cos(\alpha - \beta))^2 + (-\sin(\alpha - \beta))^2} \\[1em] &=& \sqrt{(1 - 2\cos(\alpha - \beta) + \cos^2(\alpha - \beta)) + (\sin^2(\alpha - \beta))} \\[1em] &=& \sqrt{1 - 2\cos(\alpha - \beta) + (\cos^2(\alpha - \beta) + \sin^2(\alpha - \beta))} \\[1em] &=& \sqrt{1 - 2\cos(\alpha - \beta) + 1} \\[1em] &=& \sqrt{2 - 2\cos(\alpha - \beta)} \\[1em] \end{array}

Finally, we can set the lengths of segments PQPQ and ABAB equal to each other to solve for cos(αβ)\cos(\alpha - \beta)...

PQ=AB22(cosαcosβ+sinαsinβ)=22cos(αβ)22(cosαcosβ+sinαsinβ)=22cos(αβ)2(cosαcosβ+sinαsinβ)=2cos(αβ)cosαcosβ+sinαsinβ=cos(αβ)\begin{array}{cccccccc} \text{PQ} &=& \text{AB} \\[1em] \sqrt{2 - 2(\cos \alpha \cos \beta + \sin \alpha \sin \beta)} &=& \sqrt{2 - 2\cos(\alpha - \beta)} \\[1em] 2 - 2(\cos \alpha \cos \beta + \sin \alpha \sin \beta) &=& 2 - 2\cos(\alpha - \beta) \\[1em] -2(\cos \alpha \cos \beta + \sin \alpha \sin \beta) &=& -2\cos(\alpha - \beta) \\[1em] \cos \alpha \cos \beta + \sin \alpha \sin \beta &=& \cos(\alpha - \beta) \\[1em] \end{array}

So, the derived formula for the difference of cosine is cos(αβ)=cosαcosβ+sinαsinβ\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta.

Sum of Cosine

We can derive the sum formula for cosine by using the difference of cosine because cos(α+β)=cos(α(β))\cos(\alpha + \beta) = \cos(\alpha - (-\beta)) which means we can use the difference of cosine formula to find the sum of cosine formula.

cos(α+β)=cos(α(β))=cosαcos(β)+sinαsin(β)=cosαcosβ+sinα(sinβ)=cosαcosβsinαsinβ\begin{array}{cccccccc} \cos(\alpha + \beta) &=& \cos(\alpha - (-\beta)) \\[1em] &=& \cos \alpha \cos(-\beta) + \sin \alpha \sin(-\beta) \\[1em] &=& \cos \alpha \cos \beta + \sin \alpha (-\sin \beta) \\[1em] &=& \cos \alpha \cos \beta - \sin \alpha \sin \beta \\[1em] \end{array}

So, the derived formula for the sum of cosine is cos(α+β)=cosαcosβsinαsinβ\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta.

Cofunction Identities

In order to derive the sum of sine formula, we need the cofunction identities. Let's begin by drawing a right triangle with an angle θ\theta in standard position. So, the coordinates of the point where the terminal side of the angle intersects the unit circle is (x,y)(x, y). Using these coordinates, we can deduce that the length of the opposite side of the triangle is yy and the length of the adjacent side is xx. We also know the value of the hypotenuse is 11 because the radius of the unit circle is 11. Finally, the angles of the triangle are θ\theta and π2\frac{\pi}{2} so the third angle must be π2θ\frac{\pi}{2} - \theta because the sum of the angles in a triangle is equal to π\pi. This gives us the following diagram...

Cofunction
Fig. 2 - Cofunction

Using the diagram, we can solve for the values of the six trigonometric functions for the angle θ\theta and the angle π2θ\frac{\pi}{2} - \theta giving us the following equations...

sinθ=ysin(90θ)=xcosθ=xcos(90θ)=ytanθ=yxtan(90θ)=xycscθ=1ycsc(90θ)=1xsecθ=1xsec(90θ)=1ycotθ=xycot(90θ)=yx\begin{array}{lllllllll} \sin \theta = y && \sin(90^\circ - \theta) = x \\[1em] \cos \theta = x && \cos(90^\circ - \theta) = y \\[1em] \tan \theta = \frac{y}{x} && \tan(90^\circ - \theta) = \frac{x}{y} \\[1em] \csc \theta = \frac{1}{y} && \csc(90^\circ - \theta) = \frac{1}{x} \\[1em] \sec \theta = \frac{1}{x} && \sec(90^\circ - \theta) = \frac{1}{y} \\[1em] \cot \theta = \frac{x}{y} && \cot(90^\circ - \theta) = \frac{y}{x} \\[1em] \end{array}

Using these equations, we can derive the cofunction identities by rewriting the equations in terms of θ\theta and π2θ\frac{\pi}{2} - \theta. This gives us the following cofunction identities...

sinα=cos(90θ)cosα=sin(90θ)tanα=cot(90θ)cscα=sec(90θ)secα=csc(90θ)cotα=tan(90θ)\begin{array}{lllllllll} \sin \alpha &=& \cos(90^\circ - \theta) \\[1em] \cos \alpha &=& \sin(90^\circ - \theta) \\[1em] \tan \alpha &=& \cot(90^\circ - \theta) \\[1em] \csc \alpha &=& \sec(90^\circ - \theta) \\[1em] \sec \alpha &=& \csc(90^\circ - \theta) \\[1em] \cot \alpha &=& \tan(90^\circ - \theta) \\[1em] \end{array}

Sum of Sine

Using the cofunction identities, we can rewrite sin(α+β)\sin(\alpha + \beta) as sin(α+β)=cos(π2(α+β))\sin(\alpha + \beta) = \cos(\frac{\pi}{2} - (\alpha + \beta)) which is in the same form as the difference of cosine formula. So, we can use the difference of cosine formula to find the sum of sine formula...

sin(α+β)=cos(π2(α+β))=cos(π2αβ)=cos((π2α)β)=cos(π2α)cosβ+sin(π2α)sinβ=sinαcosβ+cosαsinβ\begin{array}{cccccccc} \sin(\alpha + \beta) &=& \cos(\frac{\pi}{2} - (\alpha + \beta)) \\[1em] &=& \cos(\frac{\pi}{2} - \alpha - \beta) \\[1em] &=& \cos((\frac{\pi}{2} - \alpha) - \beta) \\[1em] &=& \cos(\frac{\pi}{2} - \alpha)\cos \beta + \sin(\frac{\pi}{2} - \alpha)\sin \beta \\[1em] &=& \sin \alpha \cos \beta + \cos \alpha \sin \beta \\[1em] \end{array}

So, the derived formula for the sum of sine is sin(α+β)=sinαcosβ+cosαsinβ\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta.

Difference of Sine

We can derive the difference formula for sine by using the sum of sine formula because sin(αβ)=sin(α+(β))\sin(\alpha - \beta) = \sin(\alpha + (-\beta))...

sin(αβ)=sin(α+(β))=sinαcos(β)+cosαsin(β)=sinαcosβ+cosα(sinβ)=sinαcosβcosαsinβ\begin{array}{cccccccc} \sin(\alpha - \beta) &=& \sin(\alpha + (-\beta)) \\[1em] &=& \sin \alpha \cos(-\beta) + \cos \alpha \sin(-\beta) \\[1em] &=& \sin \alpha \cos \beta + \cos \alpha (-\sin \beta) \\[1em] &=& \sin \alpha \cos \beta - \cos \alpha \sin \beta \\[1em] \end{array}

So, the derived formula for the difference of sine is sin(αβ)=sinαcosβcosαsinβ\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta.

Sum and Difference of Tangent

Using the fact that tanθ=sinθcosθ\tan \theta = \dfrac{\sin \theta}{\cos \theta}, we can derive the sum and difference formulas for tangent. Let's begin with the sum of tangent formula...

tan(α+β)=sin(α+β)cos(α+β)=sinαcosβ+cosαsinβcosαcosβsinαsinβ=sinαcosβ+cosαsinβcosαcosβ÷cosαcosβsinαsinβcosαcosβ=(sinαcosβcosαcosβ+cosαsinβcosαcosβ)÷(cosαcosβcosαcosβsinαsinβcosαcosβ)=(sinαcosα+sinβcosβ)÷(1sinαsinβcosαcosβ)=(tanα+tanβ)÷(1tanαtanβ)=tanα+tanβ1tanαtanβ\begin{array}{cccccccc} \tan(\alpha + \beta) &=& \dfrac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} \\[1.5em] &=& \dfrac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta - \sin \alpha \sin \beta} \\[1.5em] &=& \dfrac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta} \div \dfrac{\cos \alpha \cos \beta - \sin \alpha \sin \beta}{\cos \alpha \cos \beta} \\[1.5em] &=& (\dfrac{\sin \alpha \cos \beta}{\cos \alpha \cos \beta} + \dfrac{\cos \alpha \sin \beta}{\cos \alpha \cos \beta}) \div (\dfrac{\cos \alpha \cos \beta}{\cos \alpha \cos \beta} - \dfrac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}) \\[1.5em] &=& (\dfrac{\sin \alpha}{\cos \alpha} + \dfrac{\sin \beta}{\cos \beta}) \div (1 - \dfrac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}) \\[1.5em] &=& (\tan \alpha + \tan \beta) \div (1 - \tan \alpha \tan \beta) \\[1.5em] &=& \dfrac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \\[1.5em] \end{array}

So, the derived formula for the sum of tangent is tan(α+β)=tanα+tanβ1tanαtanβ\tan(\alpha + \beta) = \dfrac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}. We can now derive the difference of tangent formula using the sum of tangent formula because tan(αβ)=tan(α+(β))\tan(\alpha - \beta) = \tan(\alpha + (-\beta))...

tan(αβ)=tan(α+(β))=tanα+tan(β)1tanαtan(β)=tanα+(tanβ)1tanα(tanβ)=tanαtanβ1+tanαtanβ\begin{array}{cccccccc} \tan(\alpha - \beta) &=& \tan(\alpha + (-\beta)) \\[1em] &=& \dfrac{\tan \alpha + \tan(-\beta)}{1 - \tan \alpha \tan(-\beta)} \\[1.5em] &=& \dfrac{\tan \alpha + (-\tan \beta)}{1 - \tan \alpha (-\tan \beta)} \\[1.5em] &=& \dfrac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta} \\[1.5em] \end{array}

So, the derived formula for the difference of tangent is tan(αβ)=tanαtanβ1+tanαtanβ\tan(\alpha - \beta) = \dfrac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}.

Trigonometric Identities

The cofunction identities are...

sin(90θ)=cosθcos(90θ)=sinθcsc(90θ)=secθsec(90θ)=cscθtan(90θ)=cotθcot(90θ)=tanθ\begin{array}{ccccccccc} \sin(90^\circ - \theta) &=& \cos \theta &&& \cos(90^\circ - \theta) &=& \sin \theta \\[1em] \csc(90^\circ - \theta) &=& \sec \theta &&& \sec(90^\circ - \theta) &=& \csc \theta \\[1em] \tan(90^\circ - \theta) &=& \cot \theta &&& \cot(90^\circ - \theta) &=& \tan \theta \\[1em] \end{array}

and the sum and difference identities are...

sin(α+β)=sinαcosβ+cosαsinβsin(αβ)=sinαcosβcosαsinβcos(α+β)=cosαcosβsinαsinβcos(αβ)=cosαcosβ+sinαsinβtan(α+β)=tanα+tanβ1tanαtanβtan(αβ)=tanαtanβ1+tanαtanβ\begin{array}{ccccccccc} \sin(\alpha + \beta) &=& \sin \alpha \cos \beta + \cos \alpha \sin \beta \\[1.5em] \sin(\alpha - \beta) &=& \sin \alpha \cos \beta - \cos \alpha \sin \beta \\[1.5em] \cos(\alpha + \beta) &=& \cos \alpha \cos \beta - \sin \alpha \sin \beta \\[1.5em] \cos(\alpha - \beta) &=& \cos \alpha \cos \beta + \sin \alpha \sin \beta \\[1.5em] \tan(\alpha + \beta) &=& \dfrac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \\[1.5em] \tan(\alpha - \beta) &=& \dfrac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta} \\[1.5em] \end{array}